Robustness of iterative learning control – algorithms with experimental benchmarking

نویسنده

  • E. ROGERS
چکیده

Iterative learning control is a technique especially developed for application to processes which are required to repeat the same operation over a finite duration. The exact sequence of operation is that the task is completed, the process is reset and then the operation is repeated. Applications are widespread among many industries, e.g. a gantry robot which is required to place items on a conveyor under synchronization as part of a food manufacturing process. In effect, iterative learning control exploits the fact that once a single execution of the task is complete then the input control action and output response produced are available to update the control input for the next trial and thereby sequentially improve performance. Moreover, it may be possible to undertake the required computations during the time between completing one trial and the start of the next. This paper gives an overview of some very significant recent progress in this general area, including results from experimental benchmarking, and also some areas for on-going/future research are outlined.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control

In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...

متن کامل

Iterative learning identification and control for dynamic systems described by NARMAX model

A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...

متن کامل

H∞ based Disturbance Attenuation for Iterative Learning Control

Previous research has shown that repetitive processes, a class of 2D systems, can be used to design linear model based iterative learning control laws for convergence and transient performance, with supporting experimental benchmarking. In many applications attenuation of disturbances acting on the plant signals will also be required. The new results in this paper are control law design algorit...

متن کامل

Position Control of a Pulse Width Modulated Pneumatic Systems: an Experimental Comparison

In this study, a new adaptive controller is proposed for position control of pneumatic systems. Difficulties associated with the mathematical model of the system in addition to the instability caused by Pulse Width Modulation (PWM) in the learning-based controllers using gradient descent, motivate the development of a new approach for PWM pneumatics. In this study, two modified Feedback Error L...

متن کامل

A Study on Robustness of Iterative Learning Controller with Input Saturation Against Time-Delay

In this paper, it is first pointed out that, when a typical iterative learning control(ILC) algorithm is applied to a class of dynamic systems with time-delay, erratic estimation of delay time may cause the control input to diverge. In order to resolve such a limitation of the conventional ILC algorithms due to uncertainty of the delay time, a new ILC algorithm with input saturation is proposed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008